Global Well-Posedness for a Class of Kirchhoff-Type Wave System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost global well-posedness of Kirchhoff equation with Gevrey data

Article history: Received 26 November 2016 Accepted after revision 3 April 2017 Available online 18 April 2017 Presented by the Editorial Board The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains. © 2017 A...

متن کامل

Well-posedness for a class of generalized Zakharov system

In this paper, we study the existence and uniqueness of the global smooth solution for the initial value problem of generalized Zakharov equations in dimension two. By means of a priori integral estimates and Galerkin method, we first construct the existence of global solution with some conditions. Furthermore, we prove that the global solution is unique. c ©2017 All rights reserved.

متن کامل

H-global well-posedness for semilinear wave equations

We consider the Cauchy problem for semilinear wave equations in Rn with n 3. Making use of Bourgain’s method in conjunction with the endpoint Strichartz estimates of Keel and Tao, we establish the Hs-global well-posedness with s < 1 of the Cauchy problem for the semilinear wave equation. In doing so a number of nonlinear a priori estimates is established in the framework of Besov spaces. Our me...

متن کامل

Global Well-Posedness of a Conservative Relaxed Cross Diffusion System

We prove global existence in time of solutions to relaxed conservative cross diffusion systems governed by nonlinear operators of the form ui → ∂tui − ∆(ai(ũ)ui) where the ui, i = 1, ..., I represent I density-functions, ũ is a spatially regularized form of (u1, ..., uI) and the nonlinearities ai are merely assumed to be continuous and bounded from below. Existence of global weak solutions is o...

متن کامل

Global Well-posedness for Euler-boussinesq System with Critical Dissipation

In this paper we study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematical Physics

سال: 2017

ISSN: 1687-9120,1687-9139

DOI: 10.1155/2017/1620417